/*
 * libmad - MPEG audio decoder library
 * Copyright (C) 2000-2004 Underbit Technologies, Inc.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 * $Id: fixed.h,v 1.38 2004/02/17 02:02:03 rob Exp $
 */

#ifndef LIBMAD_FIXED_H
#define LIBMAD_FIXED_H

#include "config.h"

#if SIZEOF_INT >= 4
typedef signed int mad_fixed_t;

typedef signed int mad_fixed64hi_t;
typedef unsigned int mad_fixed64lo_t;
#else
typedef signed long mad_fixed_t;

typedef signed long mad_fixed64hi_t;
typedef unsigned long mad_fixed64lo_t;
#endif

#if defined(_MSC_VER)
#define mad_fixed64_t signed __int64
#elif 1 || defined(__GNUC__)
#define mad_fixed64_t signed long long
#endif

#if defined(FPM_FLOAT)
typedef double mad_sample_t;
#else
typedef mad_fixed_t mad_sample_t;
#endif

/*
 * Fixed-point format: 0xABBBBBBB
 * A == whole part      (sign + 3 bits)
 * B == fractional part (28 bits)
 *
 * Values are signed two's complement, so the effective range is:
 * 0x80000000 to 0x7fffffff
 *       -8.0 to +7.9999999962747097015380859375
 *
 * The smallest representable value is:
 * 0x00000001 == 0.0000000037252902984619140625 (i.e. about 3.725e-9)
 *
 * 28 bits of fractional accuracy represent about
 * 8.6 digits of decimal accuracy.
 *
 * Fixed-point numbers can be added or subtracted as normal
 * integers, but multiplication requires shifting the 64-bit result
 * from 56 fractional bits back to 28 (and rounding.)
 *
 * Changing the definition of MAD_F_FRACBITS is only partially
 * supported, and must be done with care.
 */

#define MAD_F_FRACBITS 28

#if MAD_F_FRACBITS == 28
#define MAD_F(x) ((mad_fixed_t)(x##L))
#else
#if MAD_F_FRACBITS < 28
#warning "MAD_F_FRACBITS < 28"
#define MAD_F(x) ((mad_fixed_t)(((x##L) +                              \
                                 (1L << (28 - MAD_F_FRACBITS - 1))) >> \
                                (28 - MAD_F_FRACBITS)))
#elif MAD_F_FRACBITS > 28
#error "MAD_F_FRACBITS > 28 not currently supported"
#define MAD_F(x) ((mad_fixed_t)((x##L) << (MAD_F_FRACBITS - 28)))
#endif
#endif

#define MAD_F_MIN ((mad_fixed_t)-0x80000000L)
#define MAD_F_MAX ((mad_fixed_t) + 0x7fffffffL)

#define MAD_F_ONE MAD_F(0x10000000)

#define mad_f_tofixed(x) ((mad_fixed_t)((x) * (double)(1L << MAD_F_FRACBITS) + 0.5))
#define mad_f_todouble(x) ((double)((x) / (double)(1L << MAD_F_FRACBITS)))

#define mad_f_intpart(x) ((x) >> MAD_F_FRACBITS)
#define mad_f_fracpart(x) ((x) & ((1L << MAD_F_FRACBITS) - 1))
/* (x should be positive) */

#define mad_f_fromint(x) ((x) << MAD_F_FRACBITS)

#define mad_f_add(x, y) ((x) + (y))
#define mad_f_sub(x, y) ((x) - (y))

#if defined(FPM_FLOAT)
#error "FPM_FLOAT not yet supported"

#undef MAD_F
#define MAD_F(x) mad_f_todouble(x)

#define mad_f_mul(x, y) ((x) * (y))
#define mad_f_scale64

#undef ASO_ZEROCHECK

#elif defined(FPM_64BIT)

/*
 * This version should be the most accurate if 64-bit types are supported by
 * the compiler, although it may not be the most efficient.
 */
#if defined(OPT_ACCURACY)
#define mad_f_mul(x, y)                               \
    ((mad_fixed_t)((((mad_fixed64_t)(x) * (y)) +      \
                    (1L << (MAD_F_SCALEBITS - 1))) >> \
                   MAD_F_SCALEBITS))
#else
#define mad_f_mul(x, y) \
    ((mad_fixed_t)(((mad_fixed64_t)(x) * (y)) >> MAD_F_SCALEBITS))
#endif

#define MAD_F_SCALEBITS MAD_F_FRACBITS

/* --- Intel --------------------------------------------------------------- */

#elif defined(FPM_INTEL)

#if defined(_MSC_VER)
#pragma warning(push)
#pragma warning(disable : 4035) /* no return value */
static __forceinline mad_fixed_t mad_f_mul_inline(mad_fixed_t x, mad_fixed_t y)
{
    enum
    {
        fracbits = MAD_F_FRACBITS
    };

    __asm {
    mov eax, x
    imul y
    shrd eax, edx, fracbits
    }

    /* implicit return of eax */
}
#pragma warning(pop)

#define mad_f_mul mad_f_mul_inline
#define mad_f_scale64
#else
/*
 * This Intel version is fast and accurate; the disposition of the least
 * significant bit depends on OPT_ACCURACY via mad_f_scale64().
 */
#define MAD_F_MLX(hi, lo, x, y) \
    asm("imull %3"              \
        : "=a"(lo), "=d"(hi)    \
        : "%a"(x), "rm"(y)      \
        : "cc")

#if defined(OPT_ACCURACY)
/*
 * This gives best accuracy but is not very fast.
 */
#define MAD_F_MLA(hi, lo, x, y)                      \
    ({                                               \
        mad_fixed64hi_t __hi;                        \
        mad_fixed64lo_t __lo;                        \
        MAD_F_MLX(__hi, __lo, (x), (y));             \
        asm("addl %2,%0\n\t"                         \
            "adcl %3,%1"                             \
            : "=rm"(lo), "=rm"(hi)                   \
            : "r"(__lo), "r"(__hi), "0"(lo), "1"(hi) \
            : "cc");                                 \
    })
#endif /* OPT_ACCURACY */

#if defined(OPT_ACCURACY)
/*
 * Surprisingly, this is faster than SHRD followed by ADC.
 */
#define mad_f_scale64(hi, lo)                              \
    ({                                                     \
        mad_fixed64hi_t __hi_;                             \
        mad_fixed64lo_t __lo_;                             \
        mad_fixed_t __result;                              \
        asm("addl %4,%2\n\t"                               \
            "adcl %5,%3"                                   \
            : "=rm"(__lo_), "=rm"(__hi_)                   \
            : "0"(lo), "1"(hi),                            \
              "ir"(1L << (MAD_F_SCALEBITS - 1)), "ir"(0)   \
            : "cc");                                       \
        asm("shrdl %3,%2,%1"                               \
            : "=rm"(__result)                              \
            : "0"(__lo_), "r"(__hi_), "I"(MAD_F_SCALEBITS) \
            : "cc");                                       \
        __result;                                          \
    })
#elif defined(OPT_INTEL)
/*
 * Alternate Intel scaling that may or may not perform better.
 */
#define mad_f_scale64(hi, lo)                                 \
    ({                                                        \
        mad_fixed_t __result;                                 \
        asm("shrl %3,%1\n\t"                                  \
            "shll %4,%2\n\t"                                  \
            "orl %2,%1"                                       \
            : "=rm"(__result)                                 \
            : "0"(lo), "r"(hi),                               \
              "I"(MAD_F_SCALEBITS), "I"(32 - MAD_F_SCALEBITS) \
            : "cc");                                          \
        __result;                                             \
    })
#else
#define mad_f_scale64(hi, lo)                        \
    ({                                               \
        mad_fixed_t __result;                        \
        asm("shrdl %3,%2,%1"                         \
            : "=rm"(__result)                        \
            : "0"(lo), "r"(hi), "I"(MAD_F_SCALEBITS) \
            : "cc");                                 \
        __result;                                    \
    })
#endif /* OPT_ACCURACY */

#define MAD_F_SCALEBITS MAD_F_FRACBITS
#endif

/* --- ARM ----------------------------------------------------------------- */

#elif defined(FPM_ARM)

/*
 * This ARM V4 version is as accurate as FPM_64BIT but much faster. The
 * least significant bit is properly rounded at no CPU cycle cost!
 */
#if 1
/*
 * This is faster than the default implementation via MAD_F_MLX() and
 * mad_f_scale64().
 */
#define mad_f_mul(x, y)                                       \
    ({                                                        \
        mad_fixed64hi_t __hi;                                 \
        mad_fixed64lo_t __lo;                                 \
        mad_fixed_t __result;                                 \
        asm("smull	%0, %1, %3, %4\n\t"                        \
            "movs	%0, %0, lsr %5\n\t"                         \
            "adc	%2, %0, %1, lsl %6"                          \
            : "=&r"(__lo), "=&r"(__hi), "=r"(__result)        \
            : "%r"(x), "r"(y),                                \
              "M"(MAD_F_SCALEBITS), "M"(32 - MAD_F_SCALEBITS) \
            : "cc");                                          \
        __result;                                             \
    })
#endif

#define MAD_F_MLX(hi, lo, x, y) \
    asm("smull	%0, %1, %2, %3"  \
        : "=&r"(lo), "=&r"(hi)  \
        : "%r"(x), "r"(y))

#define MAD_F_MLA(hi, lo, x, y) \
    asm("smlal	%0, %1, %2, %3"  \
        : "+r"(lo), "+r"(hi)    \
        : "%r"(x), "r"(y))

#define MAD_F_MLN(hi, lo)     \
    asm("rsbs	%0, %2, #0\n\t" \
        "rsc	%1, %3, #0"      \
        : "=r"(lo), "=r"(hi)  \
        : "0"(lo), "1"(hi)    \
        : "cc")

#define mad_f_scale64(hi, lo)                                 \
    ({                                                        \
        mad_fixed_t __result;                                 \
        asm("movs	%0, %1, lsr %3\n\t"                         \
            "adc	%0, %0, %2, lsl %4"                          \
            : "=&r"(__result)                                 \
            : "r"(lo), "r"(hi),                               \
              "M"(MAD_F_SCALEBITS), "M"(32 - MAD_F_SCALEBITS) \
            : "cc");                                          \
        __result;                                             \
    })

#define MAD_F_SCALEBITS MAD_F_FRACBITS

/* --- MIPS ---------------------------------------------------------------- */

#elif defined(FPM_MIPS)

/*
 * This MIPS version is fast and accurate; the disposition of the least
 * significant bit depends on OPT_ACCURACY via mad_f_scale64().
 */
#define MAD_F_MLX(hi, lo, x, y) \
    asm("mult	%2,%3"            \
        : "=l"(lo), "=h"(hi)    \
        : "%r"(x), "r"(y))

#if defined(HAVE_MADD_ASM)
#define MAD_F_MLA(hi, lo, x, y) \
    asm("madd	%2,%3"            \
        : "+l"(lo), "+h"(hi)    \
        : "%r"(x), "r"(y))
#elif defined(HAVE_MADD16_ASM)
/*
 * This loses significant accuracy due to the 16-bit integer limit in the
 * multiply/accumulate instruction.
 */
#define MAD_F_ML0(hi, lo, x, y) \
    asm("mult	%2,%3"            \
        : "=l"(lo), "=h"(hi)    \
        : "%r"((x) >> 12), "r"((y) >> 16))
#define MAD_F_MLA(hi, lo, x, y) \
    asm("madd16	%2,%3"          \
        : "+l"(lo), "+h"(hi)    \
        : "%r"((x) >> 12), "r"((y) >> 16))
#define MAD_F_MLZ(hi, lo) ((mad_fixed_t)(lo))
#endif

#if defined(OPT_SPEED)
#define mad_f_scale64(hi, lo) \
    ((mad_fixed_t)((hi) << (32 - MAD_F_SCALEBITS)))
#define MAD_F_SCALEBITS MAD_F_FRACBITS
#endif

/* --- SPARC --------------------------------------------------------------- */

#elif defined(FPM_SPARC)

/*
 * This SPARC V8 version is fast and accurate; the disposition of the least
 * significant bit depends on OPT_ACCURACY via mad_f_scale64().
 */
#define MAD_F_MLX(hi, lo, x, y) \
    asm("smul %2, %3, %0\n\t"   \
        "rd %%y, %1"            \
        : "=r"(lo), "=r"(hi)    \
        : "%r"(x), "rI"(y))

/* --- PowerPC ------------------------------------------------------------- */

#elif defined(FPM_PPC)

/*
 * This PowerPC version is fast and accurate; the disposition of the least
 * significant bit depends on OPT_ACCURACY via mad_f_scale64().
 */
#define MAD_F_MLX(hi, lo, x, y) \
    do                          \
    {                           \
        asm("mullw %0,%1,%2"    \
            : "=r"(lo)          \
            : "%r"(x), "r"(y)); \
        asm("mulhw %0,%1,%2"    \
            : "=r"(hi)          \
            : "%r"(x), "r"(y)); \
    } while (0)

#if defined(OPT_ACCURACY)
/*
 * This gives best accuracy but is not very fast.
 */
#define MAD_F_MLA(hi, lo, x, y)          \
    ({                                   \
        mad_fixed64hi_t __hi;            \
        mad_fixed64lo_t __lo;            \
        MAD_F_MLX(__hi, __lo, (x), (y)); \
        asm("addc %0,%2,%3\n\t"          \
            "adde %1,%4,%5"              \
            : "=r"(lo), "=r"(hi)         \
            : "%r"(lo), "r"(__lo),       \
              "%r"(hi), "r"(__hi)        \
            : "xer");                    \
    })
#endif

#if defined(OPT_ACCURACY)
/*
 * This is slower than the truncating version below it.
 */
#define mad_f_scale64(hi, lo)                 \
    ({                                        \
        mad_fixed_t __result, __round;        \
        asm("rotrwi %0,%1,%2"                 \
            : "=r"(__result)                  \
            : "r"(lo), "i"(MAD_F_SCALEBITS)); \
        asm("extrwi %0,%1,1,0"                \
            : "=r"(__round)                   \
            : "r"(__result));                 \
        asm("insrwi %0,%1,%2,0"               \
            : "+r"(__result)                  \
            : "r"(hi), "i"(MAD_F_SCALEBITS)); \
        asm("add %0,%1,%2"                    \
            : "=r"(__result)                  \
            : "%r"(__result), "r"(__round));  \
        __result;                             \
    })
#else
#define mad_f_scale64(hi, lo)                 \
    ({                                        \
        mad_fixed_t __result;                 \
        asm("rotrwi %0,%1,%2"                 \
            : "=r"(__result)                  \
            : "r"(lo), "i"(MAD_F_SCALEBITS)); \
        asm("insrwi %0,%1,%2,0"               \
            : "+r"(__result)                  \
            : "r"(hi), "i"(MAD_F_SCALEBITS)); \
        __result;                             \
    })
#endif

#define MAD_F_SCALEBITS MAD_F_FRACBITS

/* --- Default ------------------------------------------------------------- */

#elif defined(FPM_DEFAULT)

/*
 * This version is the most portable but it loses significant accuracy.
 * Furthermore, accuracy is biased against the second argument, so care
 * should be taken when ordering operands.
 *
 * The scale factors are constant as this is not used with SSO.
 *
 * Pre-rounding is required to stay within the limits of compliance.
 */
#if defined(OPT_SPEED)
#define mad_f_mul(x, y) (((x) >> 12) * ((y) >> 16))
#else
#define mad_f_mul(x, y) ((((x) + (1L << 11)) >> 12) * \
                         (((y) + (1L << 15)) >> 16))
#endif

/* ------------------------------------------------------------------------- */

#else
#error "no FPM selected"
#endif

/* default implementations */

#if !defined(mad_f_mul)
#define mad_f_mul(x, y)                  \
    ({                                   \
        register mad_fixed64hi_t __hi;   \
        register mad_fixed64lo_t __lo;   \
        MAD_F_MLX(__hi, __lo, (x), (y)); \
        mad_f_scale64(__hi, __lo);       \
    })
#endif

#if !defined(MAD_F_MLA)
#define MAD_F_ML0(hi, lo, x, y) ((lo) = mad_f_mul((x), (y)))
#define MAD_F_MLA(hi, lo, x, y) ((lo) += mad_f_mul((x), (y)))
#define MAD_F_MLN(hi, lo) ((lo) = -(lo))
#define MAD_F_MLZ(hi, lo) ((void)(hi), (mad_fixed_t)(lo))
#endif

#if !defined(MAD_F_ML0)
#define MAD_F_ML0(hi, lo, x, y) MAD_F_MLX((hi), (lo), (x), (y))
#endif

#if !defined(MAD_F_MLN)
#define MAD_F_MLN(hi, lo) ((hi) = ((lo) = -(lo)) ? ~(hi) : -(hi))
#endif

#if !defined(MAD_F_MLZ)
#define MAD_F_MLZ(hi, lo) mad_f_scale64((hi), (lo))
#endif

#if !defined(mad_f_scale64)
#if defined(OPT_ACCURACY)
#define mad_f_scale64(hi, lo)                                 \
    ((((mad_fixed_t)(((hi) << (32 - (MAD_F_SCALEBITS - 1))) | \
                     ((lo) >> (MAD_F_SCALEBITS - 1)))) +      \
      1) >>                                                   \
     1)
#else
#define mad_f_scale64(hi, lo)                         \
    ((mad_fixed_t)(((hi) << (32 - MAD_F_SCALEBITS)) | \
                   ((lo) >> MAD_F_SCALEBITS)))
#endif
#define MAD_F_SCALEBITS MAD_F_FRACBITS
#endif

/* C routines */

mad_fixed_t mad_f_abs(mad_fixed_t);
mad_fixed_t mad_f_div(mad_fixed_t, mad_fixed_t);

#endif