/*
 * libmad - MPEG audio decoder library
 * Copyright (C) 2000-2004 Underbit Technologies, Inc.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 * $Id: synth.c,v 1.25 2004/01/23 09:41:33 rob Exp $
 */

#include "config.h"
#include "global.h"
#include "fixed.h"
#include "frame.h"
#include "synth.h"

/*
 * NAME:	synth->init()
 * DESCRIPTION:	initialize synth struct
 */
void mad_synth_init(struct mad_synth *synth) {
    mad_synth_mute(synth);

    synth->phase = 0;

    synth->pcm.samplerate = 0;
    synth->pcm.channels = 0;
    synth->pcm.length = 0;
}

/*
 * NAME:	synth->mute()
 * DESCRIPTION:	zero all polyphase filterbank values, resetting synthesis
 */
void mad_synth_mute(struct mad_synth *synth) {
    unsigned int ch, s, v;

    for (ch = 0; ch < 2; ++ch) {
        for (s = 0; s < 16; ++s) {
            for (v = 0; v < 8; ++v) {
                synth->filter[ch][0][0][s][v] = 0;
                synth->filter[ch][0][1][s][v] = 0;
                synth->filter[ch][1][0][s][v] = 0;
                synth->filter[ch][1][1][s][v] = 0;
            }
        }
    }
}

/*
 * An optional optimization called here the Subband Synthesis Optimization
 * (SSO) improves the performance of subband synthesis at the expense of
 * accuracy.
 *
 * The idea is to simplify 32x32->64-bit multiplication to 32x32->32 such
 * that extra scaling and rounding are not necessary. This often allows the
 * compiler to use faster 32-bit multiply-accumulate instructions instead of
 * explicit 64-bit multiply, shift, and add instructions.
 *
 * SSO works like this: a full 32x32->64-bit multiply of two mad_fixed_t
 * values requires the result to be right-shifted 28 bits to be properly
 * scaled to the same fixed-point format. Right shifts can be applied at any
 * time to either operand or to the result, so the optimization involves
 * careful placement of these shifts to minimize the loss of accuracy.
 *
 * First, a 14-bit shift is applied with rounding at compile-time to the D[]
 * table of coefficients for the subband synthesis window. This only loses 2
 * bits of accuracy because the lower 12 bits are always zero. A second
 * 12-bit shift occurs after the DCT calculation. This loses 12 bits of
 * accuracy. Finally, a third 2-bit shift occurs just before the sample is
 * saved in the PCM buffer. 14 + 12 + 2 == 28 bits.
 */

/* FPM_DEFAULT without OPT_SSO will actually lose accuracy and performance */

#if defined(FPM_DEFAULT) && !defined(OPT_SSO)
#define OPT_SSO
#endif

/* second SSO shift, with rounding */

#if defined(OPT_SSO)
#define SHIFT(x) (((x) + (1L << 11)) >> 12)
#else
#define SHIFT(x) (x)
#endif

/* possible DCT speed optimization */

#if defined(OPT_SPEED) && defined(MAD_F_MLX)
#define OPT_DCTO
#define MUL(x, y)                         \
    ({                                    \
        mad_fixed64hi_t hi;               \
        mad_fixed64lo_t lo;               \
        MAD_F_MLX(hi, lo, (x), (y));      \
        hi << (32 - MAD_F_SCALEBITS - 3); \
    })
#else
#undef OPT_DCTO
#define MUL(x, y) mad_f_mul((x), (y))
#endif

/*
 * NAME:	dct32()
 * DESCRIPTION:	perform fast in[32]->out[32] DCT
 */
static void dct32(mad_fixed_t const in[32], unsigned int slot,
                  mad_fixed_t lo[16][8], mad_fixed_t hi[16][8])
{
    mad_fixed_t t0, t1, t2, t3, t4, t5, t6, t7;
    mad_fixed_t t8, t9, t10, t11, t12, t13, t14, t15;
    mad_fixed_t t16, t17, t18, t19, t20, t21, t22, t23;
    mad_fixed_t t24, t25, t26, t27, t28, t29, t30, t31;
    mad_fixed_t t32, t33, t34, t35, t36, t37, t38, t39;
    mad_fixed_t t40, t41, t42, t43, t44, t45, t46, t47;
    mad_fixed_t t48, t49, t50, t51, t52, t53, t54, t55;
    mad_fixed_t t56, t57, t58, t59, t60, t61, t62, t63;
    mad_fixed_t t64, t65, t66, t67, t68, t69, t70, t71;
    mad_fixed_t t72, t73, t74, t75, t76, t77, t78, t79;
    mad_fixed_t t80, t81, t82, t83, t84, t85, t86, t87;
    mad_fixed_t t88, t89, t90, t91, t92, t93, t94, t95;
    mad_fixed_t t96, t97, t98, t99, t100, t101, t102, t103;
    mad_fixed_t t104, t105, t106, t107, t108, t109, t110, t111;
    mad_fixed_t t112, t113, t114, t115, t116, t117, t118, t119;
    mad_fixed_t t120, t121, t122, t123, t124, t125, t126, t127;
    mad_fixed_t t128, t129, t130, t131, t132, t133, t134, t135;
    mad_fixed_t t136, t137, t138, t139, t140, t141, t142, t143;
    mad_fixed_t t144, t145, t146, t147, t148, t149, t150, t151;
    mad_fixed_t t152, t153, t154, t155, t156, t157, t158, t159;
    mad_fixed_t t160, t161, t162, t163, t164, t165, t166, t167;
    mad_fixed_t t168, t169, t170, t171, t172, t173, t174, t175;
    mad_fixed_t t176;

    /* costab[i] = cos(PI / (2 * 32) * i) */

#if defined(OPT_DCTO)
#define costab1 MAD_F(0x7fd8878e)
#define costab2 MAD_F(0x7f62368f)
#define costab3 MAD_F(0x7e9d55fc)
#define costab4 MAD_F(0x7d8a5f40)
#define costab5 MAD_F(0x7c29fbee)
#define costab6 MAD_F(0x7a7d055b)
#define costab7 MAD_F(0x78848414)
#define costab8 MAD_F(0x7641af3d)
#define costab9 MAD_F(0x73b5ebd1)
#define costab10 MAD_F(0x70e2cbc6)
#define costab11 MAD_F(0x6dca0d14)
#define costab12 MAD_F(0x6a6d98a4)
#define costab13 MAD_F(0x66cf8120)
#define costab14 MAD_F(0x62f201ac)
#define costab15 MAD_F(0x5ed77c8a)
#define costab16 MAD_F(0x5a82799a)
#define costab17 MAD_F(0x55f5a4d2)
#define costab18 MAD_F(0x5133cc94)
#define costab19 MAD_F(0x4c3fdff4)
#define costab20 MAD_F(0x471cece7)
#define costab21 MAD_F(0x41ce1e65)
#define costab22 MAD_F(0x3c56ba70)
#define costab23 MAD_F(0x36ba2014)
#define costab24 MAD_F(0x30fbc54d)
#define costab25 MAD_F(0x2b1f34eb)
#define costab26 MAD_F(0x25280c5e)
#define costab27 MAD_F(0x1f19f97b)
#define costab28 MAD_F(0x18f8b83c)
#define costab29 MAD_F(0x12c8106f)
#define costab30 MAD_F(0x0c8bd35e)
#define costab31 MAD_F(0x0647d97c)
#else
#define costab1 MAD_F(0x0ffb10f2)  /* 0.998795456 */
#define costab2 MAD_F(0x0fec46d2)  /* 0.995184727 */
#define costab3 MAD_F(0x0fd3aac0)  /* 0.989176510 */
#define costab4 MAD_F(0x0fb14be8)  /* 0.980785280 */
#define costab5 MAD_F(0x0f853f7e)  /* 0.970031253 */
#define costab6 MAD_F(0x0f4fa0ab)  /* 0.956940336 */
#define costab7 MAD_F(0x0f109082)  /* 0.941544065 */
#define costab8 MAD_F(0x0ec835e8)  /* 0.923879533 */
#define costab9 MAD_F(0x0e76bd7a)  /* 0.903989293 */
#define costab10 MAD_F(0x0e1c5979) /* 0.881921264 */
#define costab11 MAD_F(0x0db941a3) /* 0.857728610 */
#define costab12 MAD_F(0x0d4db315) /* 0.831469612 */
#define costab13 MAD_F(0x0cd9f024) /* 0.803207531 */
#define costab14 MAD_F(0x0c5e4036) /* 0.773010453 */
#define costab15 MAD_F(0x0bdaef91) /* 0.740951125 */
#define costab16 MAD_F(0x0b504f33) /* 0.707106781 */
#define costab17 MAD_F(0x0abeb49a) /* 0.671558955 */
#define costab18 MAD_F(0x0a267993) /* 0.634393284 */
#define costab19 MAD_F(0x0987fbfe) /* 0.595699304 */
#define costab20 MAD_F(0x08e39d9d) /* 0.555570233 */
#define costab21 MAD_F(0x0839c3cd) /* 0.514102744 */
#define costab22 MAD_F(0x078ad74e) /* 0.471396737 */
#define costab23 MAD_F(0x06d74402) /* 0.427555093 */
#define costab24 MAD_F(0x061f78aa) /* 0.382683432 */
#define costab25 MAD_F(0x0563e69d) /* 0.336889853 */
#define costab26 MAD_F(0x04a5018c) /* 0.290284677 */
#define costab27 MAD_F(0x03e33f2f) /* 0.242980180 */
#define costab28 MAD_F(0x031f1708) /* 0.195090322 */
#define costab29 MAD_F(0x0259020e) /* 0.146730474 */
#define costab30 MAD_F(0x01917a6c) /* 0.098017140 */
#define costab31 MAD_F(0x00c8fb30) /* 0.049067674 */
#endif

    t0 = in[0] + in[31];
    t16 = MUL(in[0] - in[31], costab1);
    t1 = in[15] + in[16];
    t17 = MUL(in[15] - in[16], costab31);

    t41 = t16 + t17;
    t59 = MUL(t16 - t17, costab2);
    t33 = t0 + t1;
    t50 = MUL(t0 - t1, costab2);

    t2 = in[7] + in[24];
    t18 = MUL(in[7] - in[24], costab15);
    t3 = in[8] + in[23];
    t19 = MUL(in[8] - in[23], costab17);

    t42 = t18 + t19;
    t60 = MUL(t18 - t19, costab30);
    t34 = t2 + t3;
    t51 = MUL(t2 - t3, costab30);

    t4 = in[3] + in[28];
    t20 = MUL(in[3] - in[28], costab7);
    t5 = in[12] + in[19];
    t21 = MUL(in[12] - in[19], costab25);

    t43 = t20 + t21;
    t61 = MUL(t20 - t21, costab14);
    t35 = t4 + t5;
    t52 = MUL(t4 - t5, costab14);

    t6 = in[4] + in[27];
    t22 = MUL(in[4] - in[27], costab9);
    t7 = in[11] + in[20];
    t23 = MUL(in[11] - in[20], costab23);

    t44 = t22 + t23;
    t62 = MUL(t22 - t23, costab18);
    t36 = t6 + t7;
    t53 = MUL(t6 - t7, costab18);

    t8 = in[1] + in[30];
    t24 = MUL(in[1] - in[30], costab3);
    t9 = in[14] + in[17];
    t25 = MUL(in[14] - in[17], costab29);

    t45 = t24 + t25;
    t63 = MUL(t24 - t25, costab6);
    t37 = t8 + t9;
    t54 = MUL(t8 - t9, costab6);

    t10 = in[6] + in[25];
    t26 = MUL(in[6] - in[25], costab13);
    t11 = in[9] + in[22];
    t27 = MUL(in[9] - in[22], costab19);

    t46 = t26 + t27;
    t64 = MUL(t26 - t27, costab26);
    t38 = t10 + t11;
    t55 = MUL(t10 - t11, costab26);

    t12 = in[2] + in[29];
    t28 = MUL(in[2] - in[29], costab5);
    t13 = in[13] + in[18];
    t29 = MUL(in[13] - in[18], costab27);

    t47 = t28 + t29;
    t65 = MUL(t28 - t29, costab10);
    t39 = t12 + t13;
    t56 = MUL(t12 - t13, costab10);

    t14 = in[5] + in[26];
    t30 = MUL(in[5] - in[26], costab11);
    t15 = in[10] + in[21];
    t31 = MUL(in[10] - in[21], costab21);

    t48 = t30 + t31;
    t66 = MUL(t30 - t31, costab22);
    t40 = t14 + t15;
    t57 = MUL(t14 - t15, costab22);

    t69 = t33 + t34;
    t89 = MUL(t33 - t34, costab4);
    t70 = t35 + t36;
    t90 = MUL(t35 - t36, costab28);
    t71 = t37 + t38;
    t91 = MUL(t37 - t38, costab12);
    t72 = t39 + t40;
    t92 = MUL(t39 - t40, costab20);
    t73 = t41 + t42;
    t94 = MUL(t41 - t42, costab4);
    t74 = t43 + t44;
    t95 = MUL(t43 - t44, costab28);
    t75 = t45 + t46;
    t96 = MUL(t45 - t46, costab12);
    t76 = t47 + t48;
    t97 = MUL(t47 - t48, costab20);

    t78 = t50 + t51;
    t100 = MUL(t50 - t51, costab4);
    t79 = t52 + t53;
    t101 = MUL(t52 - t53, costab28);
    t80 = t54 + t55;
    t102 = MUL(t54 - t55, costab12);
    t81 = t56 + t57;
    t103 = MUL(t56 - t57, costab20);

    t83 = t59 + t60;
    t106 = MUL(t59 - t60, costab4);
    t84 = t61 + t62;
    t107 = MUL(t61 - t62, costab28);
    t85 = t63 + t64;
    t108 = MUL(t63 - t64, costab12);
    t86 = t65 + t66;
    t109 = MUL(t65 - t66, costab20);

    t113 = t69 + t70;
    t114 = t71 + t72;

    /*  0 */ hi[15][slot] = SHIFT(t113 + t114);
    /* 16 */ lo[0][slot] = SHIFT(MUL(t113 - t114, costab16));

    t115 = t73 + t74;
    t116 = t75 + t76;

    t32 = t115 + t116;

    /*  1 */ hi[14][slot] = SHIFT(t32);

    t118 = t78 + t79;
    t119 = t80 + t81;

    t58 = t118 + t119;

    /*  2 */ hi[13][slot] = SHIFT(t58);

    t121 = t83 + t84;
    t122 = t85 + t86;

    t67 = t121 + t122;

    t49 = (t67 * 2) - t32;

    /*  3 */ hi[12][slot] = SHIFT(t49);

    t125 = t89 + t90;
    t126 = t91 + t92;

    t93 = t125 + t126;

    /*  4 */ hi[11][slot] = SHIFT(t93);

    t128 = t94 + t95;
    t129 = t96 + t97;

    t98 = t128 + t129;

    t68 = (t98 * 2) - t49;

    /*  5 */ hi[10][slot] = SHIFT(t68);

    t132 = t100 + t101;
    t133 = t102 + t103;

    t104 = t132 + t133;

    t82 = (t104 * 2) - t58;

    /*  6 */ hi[9][slot] = SHIFT(t82);

    t136 = t106 + t107;
    t137 = t108 + t109;

    t110 = t136 + t137;

    t87 = (t110 * 2) - t67;

    t77 = (t87 * 2) - t68;

    /*  7 */ hi[8][slot] = SHIFT(t77);

    t141 = MUL(t69 - t70, costab8);
    t142 = MUL(t71 - t72, costab24);
    t143 = t141 + t142;

    /*  8 */ hi[7][slot] = SHIFT(t143);
    /* 24 */ lo[8][slot] =
        SHIFT((MUL(t141 - t142, costab16) * 2) - t143);

    t144 = MUL(t73 - t74, costab8);
    t145 = MUL(t75 - t76, costab24);
    t146 = t144 + t145;

    t88 = (t146 * 2) - t77;

    /*  9 */ hi[6][slot] = SHIFT(t88);

    t148 = MUL(t78 - t79, costab8);
    t149 = MUL(t80 - t81, costab24);
    t150 = t148 + t149;

    t105 = (t150 * 2) - t82;

    /* 10 */ hi[5][slot] = SHIFT(t105);

    t152 = MUL(t83 - t84, costab8);
    t153 = MUL(t85 - t86, costab24);
    t154 = t152 + t153;

    t111 = (t154 * 2) - t87;

    t99 = (t111 * 2) - t88;

    /* 11 */ hi[4][slot] = SHIFT(t99);

    t157 = MUL(t89 - t90, costab8);
    t158 = MUL(t91 - t92, costab24);
    t159 = t157 + t158;

    t127 = (t159 * 2) - t93;

    /* 12 */ hi[3][slot] = SHIFT(t127);

    t160 = (MUL(t125 - t126, costab16) * 2) - t127;

    /* 20 */ lo[4][slot] = SHIFT(t160);
    /* 28 */ lo[12][slot] =
        SHIFT((((MUL(t157 - t158, costab16) * 2) - t159) * 2) - t160);

    t161 = MUL(t94 - t95, costab8);
    t162 = MUL(t96 - t97, costab24);
    t163 = t161 + t162;

    t130 = (t163 * 2) - t98;

    t112 = (t130 * 2) - t99;

    /* 13 */ hi[2][slot] = SHIFT(t112);

    t164 = (MUL(t128 - t129, costab16) * 2) - t130;

    t166 = MUL(t100 - t101, costab8);
    t167 = MUL(t102 - t103, costab24);
    t168 = t166 + t167;

    t134 = (t168 * 2) - t104;

    t120 = (t134 * 2) - t105;

    /* 14 */ hi[1][slot] = SHIFT(t120);

    t135 = (MUL(t118 - t119, costab16) * 2) - t120;

    /* 18 */ lo[2][slot] = SHIFT(t135);

    t169 = (MUL(t132 - t133, costab16) * 2) - t134;

    t151 = (t169 * 2) - t135;

    /* 22 */ lo[6][slot] = SHIFT(t151);

    t170 = (((MUL(t148 - t149, costab16) * 2) - t150) * 2) - t151;

    /* 26 */ lo[10][slot] = SHIFT(t170);
    /* 30 */ lo[14][slot] =
        SHIFT((((((MUL(t166 - t167, costab16) * 2) -
                  t168) *
                 2) -
                t169) *
               2) -
              t170);

    t171 = MUL(t106 - t107, costab8);
    t172 = MUL(t108 - t109, costab24);
    t173 = t171 + t172;

    t138 = (t173 * 2) - t110;

    t123 = (t138 * 2) - t111;

    t139 = (MUL(t121 - t122, costab16) * 2) - t123;

    t117 = (t123 * 2) - t112;

    /* 15 */ hi[0][slot] = SHIFT(t117);

    t124 = (MUL(t115 - t116, costab16) * 2) - t117;

    /* 17 */ lo[1][slot] = SHIFT(t124);

    t131 = (t139 * 2) - t124;

    /* 19 */ lo[3][slot] = SHIFT(t131);

    t140 = (t164 * 2) - t131;

    /* 21 */ lo[5][slot] = SHIFT(t140);

    t174 = (MUL(t136 - t137, costab16) * 2) - t138;

    t155 = (t174 * 2) - t139;

    t147 = (t155 * 2) - t140;

    /* 23 */ lo[7][slot] = SHIFT(t147);

    t156 = (((MUL(t144 - t145, costab16) * 2) - t146) * 2) - t147;

    /* 25 */ lo[9][slot] = SHIFT(t156);

    t175 = (((MUL(t152 - t153, costab16) * 2) - t154) * 2) - t155;

    t165 = (t175 * 2) - t156;

    /* 27 */ lo[11][slot] = SHIFT(t165);

    t176 = (((((MUL(t161 - t162, costab16) * 2) -
               t163) *
              2) -
             t164) *
            2) -
           t165;

    /* 29 */ lo[13][slot] = SHIFT(t176);
    /* 31 */ lo[15][slot] =
        SHIFT((((((((MUL(t171 - t172, costab16) * 2) -
                    t173) *
                   2) -
                  t174) *
                 2) -
                t175) *
               2) -
              t176);

    /*
     * Totals:
     *  80 multiplies
     *  80 additions
     * 119 subtractions
     *  49 shifts (not counting SSO)
     */
}

#undef MUL
#undef SHIFT

/* third SSO shift and/or D[] optimization preshift */

#if defined(OPT_SSO)
#if MAD_F_FRACBITS != 28
#error "MAD_F_FRACBITS must be 28 to use OPT_SSO"
#endif
#define ML0(hi, lo, x, y) ((lo) = (x) * (y))
#define MLA(hi, lo, x, y) ((lo) += (x) * (y))
#define MLN(hi, lo) ((lo) = -(lo))
#define MLZ(hi, lo) ((void)(hi), (mad_fixed_t)(lo))
#define SHIFT(x) ((x) >> 2)
#define PRESHIFT(x) ((MAD_F(x) + (1L << 13)) >> 14)
#else
#define ML0(hi, lo, x, y) MAD_F_ML0((hi), (lo), (x), (y))
#define MLA(hi, lo, x, y) MAD_F_MLA((hi), (lo), (x), (y))
#define MLN(hi, lo) MAD_F_MLN((hi), (lo))
#define MLZ(hi, lo) MAD_F_MLZ((hi), (lo))
#define SHIFT(x) (x)
#if defined(MAD_F_SCALEBITS)
#undef MAD_F_SCALEBITS
#define MAD_F_SCALEBITS (MAD_F_FRACBITS - 12)
#define PRESHIFT(x) (MAD_F(x) >> 12)
#else
#define PRESHIFT(x) MAD_F(x)
#endif
#endif

static mad_fixed_t const D[17][32] = {
#include "D.dat"
};

/*
 * NAME:	synth->full()
 * DESCRIPTION:	perform full frequency PCM synthesis
 */
static void synth_full(struct mad_synth *synth, struct mad_frame const *frame,
                       unsigned int nch, unsigned int ns)
{
    unsigned int phase, ch, s, sb, pe, po;
    mad_fixed_t *pcm1, *pcm2, (*filter)[2][2][16][8];
    mad_fixed_t const(*sbsample)[36][32];
    register mad_fixed_t(*fe)[8], (*fx)[8], (*fo)[8];
    register mad_fixed_t const(*Dptr)[32], *ptr;
    register mad_fixed64hi_t hi;
    register mad_fixed64lo_t lo;

    for (ch = 0; ch < nch; ++ch) {
        sbsample = &frame->sbsample[ch];
        filter = &synth->filter[ch];
        phase = synth->phase;
        pcm1 = synth->pcm.samples[ch];

        for (s = 0; s < ns; ++s) {
            dct32((*sbsample)[s], phase >> 1, (*filter)[0][phase & 1], (*filter)[1][phase & 1]);

            pe = phase & ~1;
            po = ((phase - 1) & 0xf) | 1;

            /* calculate 32 samples */

            fe = &(*filter)[0][phase & 1][0];
            fx = &(*filter)[0][~phase & 1][0];
            fo = &(*filter)[1][~phase & 1][0];

            Dptr = &D[0];

            ptr = *Dptr + po;
            ML0(hi, lo, (*fx)[0], ptr[0]);
            MLA(hi, lo, (*fx)[1], ptr[14]);
            MLA(hi, lo, (*fx)[2], ptr[12]);
            MLA(hi, lo, (*fx)[3], ptr[10]);
            MLA(hi, lo, (*fx)[4], ptr[8]);
            MLA(hi, lo, (*fx)[5], ptr[6]);
            MLA(hi, lo, (*fx)[6], ptr[4]);
            MLA(hi, lo, (*fx)[7], ptr[2]);
            MLN(hi, lo);

            ptr = *Dptr + pe;
            MLA(hi, lo, (*fe)[0], ptr[0]);
            MLA(hi, lo, (*fe)[1], ptr[14]);
            MLA(hi, lo, (*fe)[2], ptr[12]);
            MLA(hi, lo, (*fe)[3], ptr[10]);
            MLA(hi, lo, (*fe)[4], ptr[8]);
            MLA(hi, lo, (*fe)[5], ptr[6]);
            MLA(hi, lo, (*fe)[6], ptr[4]);
            MLA(hi, lo, (*fe)[7], ptr[2]);

            *pcm1++ = SHIFT(MLZ(hi, lo));

            pcm2 = pcm1 + 30;

            for (sb = 1; sb < 16; ++sb) {
                ++fe;
                ++Dptr;

                /* D[32 - sb][i] == -D[sb][31 - i] */

                ptr = *Dptr + po;
                ML0(hi, lo, (*fo)[0], ptr[0]);
                MLA(hi, lo, (*fo)[1], ptr[14]);
                MLA(hi, lo, (*fo)[2], ptr[12]);
                MLA(hi, lo, (*fo)[3], ptr[10]);
                MLA(hi, lo, (*fo)[4], ptr[8]);
                MLA(hi, lo, (*fo)[5], ptr[6]);
                MLA(hi, lo, (*fo)[6], ptr[4]);
                MLA(hi, lo, (*fo)[7], ptr[2]);
                MLN(hi, lo);

                ptr = *Dptr + pe;
                MLA(hi, lo, (*fe)[7], ptr[2]);
                MLA(hi, lo, (*fe)[6], ptr[4]);
                MLA(hi, lo, (*fe)[5], ptr[6]);
                MLA(hi, lo, (*fe)[4], ptr[8]);
                MLA(hi, lo, (*fe)[3], ptr[10]);
                MLA(hi, lo, (*fe)[2], ptr[12]);
                MLA(hi, lo, (*fe)[1], ptr[14]);
                MLA(hi, lo, (*fe)[0], ptr[0]);

                *pcm1++ = SHIFT(MLZ(hi, lo));

                ptr = *Dptr - pe;
                ML0(hi, lo, (*fe)[0], ptr[31 - 16]);
                MLA(hi, lo, (*fe)[1], ptr[31 - 14]);
                MLA(hi, lo, (*fe)[2], ptr[31 - 12]);
                MLA(hi, lo, (*fe)[3], ptr[31 - 10]);
                MLA(hi, lo, (*fe)[4], ptr[31 - 8]);
                MLA(hi, lo, (*fe)[5], ptr[31 - 6]);
                MLA(hi, lo, (*fe)[6], ptr[31 - 4]);
                MLA(hi, lo, (*fe)[7], ptr[31 - 2]);

                ptr = *Dptr - po;
                MLA(hi, lo, (*fo)[7], ptr[31 - 2]);
                MLA(hi, lo, (*fo)[6], ptr[31 - 4]);
                MLA(hi, lo, (*fo)[5], ptr[31 - 6]);
                MLA(hi, lo, (*fo)[4], ptr[31 - 8]);
                MLA(hi, lo, (*fo)[3], ptr[31 - 10]);
                MLA(hi, lo, (*fo)[2], ptr[31 - 12]);
                MLA(hi, lo, (*fo)[1], ptr[31 - 14]);
                MLA(hi, lo, (*fo)[0], ptr[31 - 16]);

                *pcm2-- = SHIFT(MLZ(hi, lo));

                ++fo;
            }

            ++Dptr;

            ptr = *Dptr + po;
            ML0(hi, lo, (*fo)[0], ptr[0]);
            MLA(hi, lo, (*fo)[1], ptr[14]);
            MLA(hi, lo, (*fo)[2], ptr[12]);
            MLA(hi, lo, (*fo)[3], ptr[10]);
            MLA(hi, lo, (*fo)[4], ptr[8]);
            MLA(hi, lo, (*fo)[5], ptr[6]);
            MLA(hi, lo, (*fo)[6], ptr[4]);
            MLA(hi, lo, (*fo)[7], ptr[2]);

            *pcm1 = SHIFT(-MLZ(hi, lo));
            pcm1 += 16;

            phase = (phase + 1) % 16;
        }
    }
}

/*
 * NAME:	synth->frame()
 * DESCRIPTION:	perform PCM synthesis of frame subband samples
 */
void mad_synth_frame(struct mad_synth *synth, struct mad_frame const *frame) {
    unsigned int nch, ns;

    nch = MAD_NCHANNELS(&frame->header);
    ns = MAD_NSBSAMPLES(&frame->header);

    synth->pcm.samplerate = frame->header.samplerate;
    synth->pcm.channels = nch;
    synth->pcm.length = 32 * ns;

    synth_full(synth, frame, nch, ns);

    synth->phase = (synth->phase + ns) % 16;
}